

Briefing "Encrypted DNS"

DNS over TLS / DNS over HTTPS

2019-01-15 · Alex Mayrhofer · Head of Research & Development

About nic.at

Domain Registry for ".at"

• Since 1997, ~1.3M Domains

Registry-in-a-Box – new gTLDs

• Operation of .berlin, .hamburg, .versicherung, ...

RcodeZero DNS

• Anycast DNS for TLDs and Registrars / ISPs

Research & Community

• Technology, Organisations, Standardization,--

Background

Why DNS encryption was developed

The DNS anno circa 2012

- Sensational Success Story
 - Age 25, and practically unmodified
- Today: "Nothing goes" without DNS
- Clear text. Everything
 - "DNS is public anyways?"
- 99% UDP, 1% TCP "fallback"
 - Worst TCP support ever!

Photo by Simone Acquaroli on Unsplash

- DNSSEC? Makes everything secure, doesn't it !!?!
 - Does only "sign", not "encrypt"
- 2013: Snowden revelations
 - NSA: "Clear text PII data … mmmmm…"
 - IETF: "Ohh sheesh we didn't expect *that* scale!"

"Pervasive Monitoring is an Attack"

• RFC 7258 – "Pervasive Monitoring is a technical attack that should be mitigated in the design of IETF protocols, where possible"

But, but... ohhhhh...

- Consequence: Review of all important procotols
- DNS there's not even a standardized *option* for encryption
- Worse contains "privacy defeating" mechanism
 - Unneccessarily transmits full QNAME in many cases
 - EDNS(0) Client Subnet
- Leak of Meta-Data & Fingerprinting
 - Re-identification of individuals across networks

Photo by Kote Puerto on Unsplash

"We need encryption"

But where to start?

The DNS Protocol arena

IETF DPRIVE* ("PRIVate Exchange")

- 2014: "Let's deal with the stub resolver to recursor leg"
 - Most significant information leakage
 - 1:few Relation Authentication simple
 - "Don't attempt to boil the ocean"
- 2018: Re-Chartering: Includes "recursive to authoritative"
 - More complex: m:n connections (Authentication!)
 - Milestone for end of 2019

*https://datatracker.ietf.org/wg/dprive/about/

DNS over (D)TLS

IETF: DPRIVE / DNSOP / (TLS)

Liste of relevant RFCs

- RFC 7626 DNS Privacy Considerations (DPRIVE)
- RFC 7766 TCP Transport for DNS (DNSOP)
- RFC 7816 QNAME Minimization (DNSOP)
- RFC 7828 EDNS keepalive (DNSOP)
- RFC 7858 DNS over TLS (DPRIVE)
- RFC 8094 DNS over DTLS (DPRIVE)
- RFC 7830 (+RFC 8467) DNS Padding (DPRIVE)
- RFC 8310 Usage Profiles
- RFC 8446 TLS 1.3 (TLS)

- Privacy aspects / issues in areas of the DNS:
 - In the DNS message (Query Name, IP Adresse)
 - On the server
 - On the Wire
 - Re-Identification based on patterns
- Kills the "DNS is public anyways!" argument
 - Website of "Alcoholics Anonymous" is public
 - The fact that someone visits that website regularly is definitely privacy relevant!
- Practical example (similar..)
 - drugstoremorningafterpillvienna16.at
 - (Browser search requests leaking to the DNS?)

ISPA · public

RFC 7766 – TCP Transport for DNS

Goal: Establish DNS over TCP als "first class citizen"

Features

- Persistent connections (client soll die schliessen)
- Connection re-use
- Pipelining
- Response Reordering
- TCP Fast Open
- Web: "Happy Eyeballs"

RFC 7816 – QNAME Minimization

RFC 7828 – EDNS keepalive

- EDNS Option for Session Management
- For TCP only!
- Clients: "Please leave connection open for X seconds"
- Server: "Ok, leave it open for X seconds" or "Please close connection now!"

RFC 7858 – DNS over TLS (DoT)

- New Port 853 / TCP
- "On the wire" protocol is unmodified
- Authentification: Certificates usw? -> RFC 8310
 - "Opportunistic" vs. "Strict"
 - Chicken/Egg -> Bootstrapping des DoT Servers wie?
- Does not change the "path" of the DNS message
 - Existing Recursive Nameserver can simply offer an additional, encrypted channel

RFC 8094 – DNS over DTLS

- Port 853 / UDP
- "Same Same but Different"
- Experimental!
 - Issues with fragmentation
 - DTLS is not widely implemented
- Performance advantage of UDP?
 - Mostly because TCP implementation used to be so "lousy".

DNS over HTTPS

An alternative encryption scheme, driven by browser vendors

Motivation – Browser Vendors

- (a) Browsers do a lot of DNS these days
 - Websites + assets (JS, Ads, Statistics...), CDNs
 - Certificate Validation (OCSP), SafeBrowsing lists, updates, ...
 - More direct control over the DNS API desired
- (b) Timing and availability is critical
 - "Happy Eyeballs" Slow or lousy (local) DNS servers create bad user experience
 - "Bad Hotel WiFi" is often "Bad Hotel DNS"...
- (c) DNS is used for censorship
 - Circumventing local (censoring) DNS servers protects Freedom of Speech
 - Eg. Google Jigsaw

IETF DoH* (DNS over HTTPs) group

- Founded 2017
- 2018: RFC 8484
 - GET or POST
 - URI Templates (https://dnsserver.example.net/dns-query{?dns})
 - Wire-Format: application/dns-message (identical zu "normal" DNS), oder JSON
 - HTTP Response-Code always 2xx (if successful), no matter which DNS response code

^{*}https://datatracker.ietf.org/wg/doh/about/

Effects of encrypted DNS

The implications of typical operational models

"Plain" DNS

DNS over TLS

DNS over HTTPS (typical)

Concerns regarding DoH

- 4 Browser Vendors
- Few big public recursor vendors (1.1.1.1, 8.8.8.8, 9.9.9.9)
- Market concentration / Control?
 - Pre-configured public recursors
 - Example: Mozilla / Cloudflare discussion
- Media echo (German only, sorry!)
 - https://Heise.de/-4203225.html ("Die DNS Gruft gehört ausgelüftet")
 - https://heise.de/-4205380.html ("Vom DNS, aktuellen Hypes, Überwachung und Zensur")

Implementations

Server, Clients, Tools

DoT Clients

Clients/Forwarders

Mode Software				Stu	Caching forwarder/proxy						
		ldns (drill)	digit	getdns (Stubby)	BIND (dig)	Go DNS	Knot (kdig)	Unbound	BIND	Knot Res	dndist
General	Send ECS with SOURCE PREFIX- LENGTH value of 0			0	•		0				
TCP/TLS Features	TCP fast open(b)		0	•				0			
	Connection reuse (Q/R, Q/R, Q/R)		0	•	0	0	•		0	0	•
	Pipelining of queries(Q,Q,Q,R,R,R)	n/a	0	•	•	•	•		•	0	0
	Process OOOR (Q1,Q2,R2,R1)	n/a	0	•	•				•	0	•
	EDNS0 Keepalive ^(c)			0	0				(f)		
TLS Features	TLS encryption (Port 853)		•	•		•	•	0		0	
	TLS authentication			0			0	•		•	
	EDNS0 Padding		0	0	0		0		•		
	TLS DNSSEC Chain Extension										

DoT Server Software

Servers

Mode		Load Balancer	Recursive					Auth		
Software		dnsdist	Unbound	BIND	Knot Res	CoreDNS ^(e)	Tenta ^(e)	NSD	BIND	Knot Auth
General	QNAME minimisation	n/a	0	•	0					
TCP/TLS Features	TCP fast open(b)	•	•	0	•				•	•
	Process Pipelined queries	0	•	•	•			•	•	•
	Provide OOOR	(g)		•	•			n/a	n/a	n/a
	EDNS0 Keepalive ^(c)		•	•					•	
TLS Features	TLS encryption (Port 853)	0	•	(d)	•	0	0			
	Provide TLS auth credentials	0	•	(d)	•	0	0			
	EDNS0 Padding (basic)			•	•				0	
	TLS DNSSEC Chain Extension									

DoT (and DoH) public recursors

- Google DNS (8.8.8.8)
- Cloudflare (1.1.1.1)
- Quad9 (9.9.9.9)
- CleanBrowsing (various, with Filters)

DoH

- Clients
 - Mozilla Firefox
 - Google Chrome
 - (plus test tools)
- Server Software
 - https://github.com/facebookexperimental/doh-proxy
 - https://github.com/curl/curl/wiki/DNS-over-HTTPS#doh-tools

Android 9 – DNS over TLS by default

- Uses DNS over TLS if available on local nameserver
- Falls back to unencrypted DNS if unavailable

Exec Summary

- DNS can now be encrypted, either via TLS or HTTPS
- DNS over HTTPs is more "disruptive" than DNS over TLS
- Public recursors have implemented either (or both)
 - But few local providers have implemented it (see below :-/)
- Browser Vendors are implementing DNS over HTTPs
 - Ongoing policy discussions around pre-configuration of recursors
- Android 9 implements DNS over TLS *by default*
 - Automatically uses it if available (see above :-/)
 - Google suggesting to configure "dns.google" manually
- Windows / MacOS no "out of the box" solutions "Stubby"

nic.at GmbH

Jakob-Haringer-Str. 8/V · 5020 Salzburg · Austria

T+43 662 4669 -34 · F -29

alexander.mayrhofer@nic.at \cdot www.nic.at

